INCREMENTAL WEAK COMPOSITION AND INVOCATION
OF GEOGRAPHIC WEB SERVICES

Carlos GRANELL, Jos¢ POVEDA, and Michael GOULD
Departamento de Lenguajes y Sistemas Informaticos
Universitat Jaume I
E-12071, Castellén, Spain

{canut, albalade, gould} @uji.es

ABSTRACT

Geographic web services will soon become subsumed in
the e-commerce world, a world where the composition of
simple or atomic services to build compound services is a
key characteristic. Since currently no detailed model of
composite geographic web services exists, and within the
scope of work on a European Union-funded project, we
define such basic composition as part of an effort to test
for geographic web service interoperability. Rather than
adopting current static methods, we build on the concept
of weak composition and provide a model for defining,
composing and invoking compositions in a flexible
manner. We demonstrate a prototype application for this
purpose, and illustrate its utility through a simple
arithmetic function composer scenario in which complex
arithmetic expressions could be easily evaluated in base
of the composition of atomic services. Benefits of this
weak composition model over process-oriented
alternatives are mentioned. Extension to geographic web
services within an emergency management use case is
proposed and necessary semantic and other extensions are
outlined.

KEY WORDS

Web services composition, weak composition, semantic
interoperability, interoperability testing.

1. INTRODUCTION

E-commerce has become so important over the past few
years that it promises to become the global business
paradigm of excellence in the near future. E-commerce
services will naturally subsume the niche market of
geographic information services, which are the ultimate
focus of the work reported here. One of the principle
characteristic for a mature and consolidated e-commerce
will be to offer not only atomic services to be used ad hoc
but also compound services based on the chaining of other
services (atomic or also compound) which are then
invocated using web technologies. The study of workflow
(and corresponding services) has over the past few years

provided techniques for modelling the flow of activities,
normally known a priori, that are executed procedurally
within a controlled, homogeneous intra-organizational
environment, and where a single participant controls the
flow. Within the web context, however, it is not always
possible to encounter services which are homogeneous
with respect to their composition. In the heterogeneous
and dynamic context that is the web, diverse services may
appear and disappear without warning. For electronic
commerce to reach its expectations, it would seem unwise
to attempt migration of traditional process modelling
techniques to these new open environments [1]. It would
seem more logical to adapt the process models to inherent
positive characteristics of the web, which implies weak
composition (akin to late binding). For this reason, and
within the realm of the European Union-funded project
ACE-GIS [2] we propose a novel approximation defining
a declarative composition model which is consistent with
the open and dynamic characteristics of web architecture
and behaviour. ACE-GIS proposes to build a developers
platform for model-driven design and invocation of
compound geographic information services (in addition to
basic e-commerce services such as authentication and
eventually payment). While judging the conformance of a
novel web service to the implementation specifications
within Open GIS Consortium is quite straightforward",
the leap from one-to-one conformance to true
interoperability among diverse web services has yet to be
realised. In fact, measurable interoperability has yet to be
defined satisfactorily, which is why the authors undertook
the present study.

The weak composition model described in [3] outlines a
declarative composition model for web services, which is
centered around descriptive aspects, on interoperability
and on scalability. Basically, a web service composition is
defined as a set of atomic or compound web services
which interact according to certain logical rules. These
logical rules specify the patterns of composition (serial,
parallel, etc.) which describe the execution order of the
services involved in the composition, and the connection
flows established for the data flow between services.

1 See wwiv.opengis.org and follow the link to Jmplementation
Specifications .

S. Levachkine,). Serra & M. Egenho fer (Eds.) — ISBN: 970-36-0103-0

179

© Granell et a/ GEOPRO 2003 — ISBN: 970-36-0103-0

In comparison With other composition models which are
process oriented [4, 5], the approximation presented is
essentially oriented to abstract interfaces anq uses a
backtracking-mode algorithm for the invocation. _'l'he
resulting composition graph [3], as logical relations
between services, is defined implicitly by the very
structure of the composition. This graph may be termed a
tree structure, whose leaf nodes are linked to atomic
services, and whose internal nodes represent virtual
intermediate compositions, where the root node represents
and encapsulates the entire composition. During
invocation this data structure is evaluated by the
Interpretation Handler (see section 2) for the orchestrated
invocation of the composition’s services via }he
Invocation Handler (see also section 2). Only at execution
time are the necessary connections identified and
established in order to invoke all relevant services, hence
one characteristic that defines the term weak composition.
Internal nodes with compound descriptions provide both
composition patterns and connection flow descriptions.

Weak composition differs from the architecture of
traditional workflow management systems because the
latter are essentially process oriented in the construction
and execution of the composition graph. In existing
approximations the developer normally must work with
the entire graph, and so complexity increases noticeably
as the composition grows. However, the approach
described here holds the advantage that in the majority of
process models, as complex as they may be, the logical
composition graph may be decomposed into basic
patterns, serial or parallel, of just two services at a time.
The final composition encapsulates the complexity of the
model in a manner similar to that of class hierarchy in
object oriented languages; the main difference being that
here we refer to abstract interfaces and not instantiations
of classes.

The reader may be wondering why we have not exploited
one of the several existing languages for the composition
of web services, such as BPEL4WS, WSCI, BPML, etc.
[6]. Within our perceived use case, of chaining 2 or 3
well-known geographic web services—say a Web Map
Server to a Web Feature Server—to known e-commerce
services such as authentication, is not necessary to
overload the system with notions of conditional iteration
of web services or feedback among them. Therefore, we
consider web services composition without a procedural
language, only based on appropriate pattern definitions
and the inherent structure of the service description. In
addition, there currently exists no international consensus
on standard languages for composition; most are merely
commercially-driven proposals [7].

Similarly, within traditional flow context, we recognise
efforts toward defining standards for workflow
interoperability (such as W-XML or SWAP) between
workflow management systems [8], but this also has not
shown a great deal of consensus.

180

For this reason, we have proposed a new approach
different from current languages, and in the context of the
goals of the ACE-GIS project.

Intranel Applications

) encapsulates
1

Generic Web Service

A

i

WSDL Desoription

| Single Service I <<inferface>> [_ Standard _K'{ Composile l
Composite Service ’

has

L‘ompm pattern & connection mﬂ

Figure 1. Relations in weak composition (after [9])

A fundamental requisite of organisations (businesses) in
the near future [10], will be rapid and dynamic integration
of applications and processes to adapt to the web
environment. As a first step they often “wrap”
applications accessible within the organisation as web
services, to facilitate their access by all participants
involved in a certain collaborative effort. Current web
services technology permits the establishment of loosely
coupled connections, which improves interoperability
(syntactic at least) among heterogeneous services. At the
moment of creating compositions of different available
services, new relations appear among the basic elements
which form the composition. These relations are shown in
the class diagrams in figure 1.

From our viewpoint a general web service can be
considered an atomic service or a composition of such
general services. In either case the resulting composition
should appear to the user as a single entity with which to
interact. This affords several benefits including
encapsulation of the underlying service complexity and
straightforward reuse of a composition in future
compositions. The standard manner of describing external
behaviour of a web service is via Web Service
Description Language, WSDL [11]. Each web service
carries with it a WSDL description of the functionalities it
offers. In treating a composition as an atomic web service
(a so-called opaque service chain) this composition also
carries a WSDL describing the entire functionality of the
composition. However, in these composition descriptions
only the abstract description is present, without details on
concrete implementation: things such as access protocols
or location points. Service compositions at the abstract
level fit comfortably within the weak composition
concept, unlike concepts of tightly coupled components
within distributed computing models such as CORBA,
RM], etc.

In addition to the abstract WSDL description a
composition incorporates the specification of composition
patterns and connection flow established for the services

within a composition. These are encoded declaratively in
an XML WSDL extension (see Annex for a complete
example). Additional aspects such as the quality of
service (QoS) desired in a composition, semantic
attributes or security considerations, may also be
embedded declaratively in the description. This together,
abstract WSDL plus XML extension, forms an abstract
interoperability interface of the composite service, a basic
unit, which is interpreted by the Interpreter and Invocation
Handlers (see figure 2) in the model presented. This
composite WSDL description (which for the time being
we will call WSDL++) is fundamental for the weak
composition process, as the approximation follows an
abstract component-based model, which facilitates
interoperability and connectivity between services.

The remainder of the paper describes in some detail the
process of composition and invocation, fundamental
building blocks in the conceptual architecture which
exploits the weak composition concept. Then we provide
a simple example of a prototype implementation of
composition and invocation. Finally, we provide
conclusions and ideas for future research.

2. CONCEPTUAL ARCHITECTURE

To be able to define the function views that are
established in the proposed architecture for composition
and invocation of web services, we describe first a global
vision of this conceptual architecture detailed in [3].

Basically, the architecture supporting the weak
composition concept is composed of 5 layers providing a
sort of middleware between the users and the external
components such as web services, registries and catalogs:

(1) User layer, formed by applications and
interfaces directly accessible by the end
user;

(i1) Composition layer, responsible for
generating the declarative description of the
composition;

(1i1) Additional components layer, which
contains other components of the
composition, such as security, quality of
service, semantics or system monitoring;

(iv) Invocation layer, which interprets the
composition and executes it;

v) Local storage layer.

From this conceptual architecture of middleware layers,
we establish essentially two functional views of the
system, to aid in composition and invocation of services:

(1) Composition view;

(i1) Invocation view.
The composition of services involves primarily
components of the user and composition layers. At the
user layer are found the components Searcher, Browser

© Granell ef a/GEOPRO 2003 ~ ISBN: 970-36-0103-0

and Registry, while the components Composition Handler
and Description Handler together form the composition
layer of the conceptual architecture. Similar to the
composition view, the invocation view contains
components pertaining to the user layer, which are
assigned to locate, select and navigate among the desired
web services. Logically, this view also incorporates the
invocation layer, which is necessary for the execution of
web services compositions; this layer is comprised of the
Interpreter Handler and Invocation Handler components.

The remainder of this section describes in detail the
process of composition and invocation of web services,
under the guidance of the weak composition conceptual
architecture.

2.1 COMPOSITION VIEW

In figure 2 we illustrate a UML sequence diagram
outlining the mode in which the search and composition
of web services is carried out.

The first 4 steps define the search for available web
services, atomic or already compound, supposing the
presence of a service catalog accessible locally or
remotely (ultimately via web). Once the services are
selected, the composition process is initiated (steps 5-14).
This composition is supervised by the user with assistance
from the Coordinator component. During the composition
process, first we establish a composition pattern and
connection flow for the messages involved in linking a
pair of web services (step 5). As mentioned earlier,
component-oriented composition consists of decomposing
complex compositions in basic patterns of pairs (avoiding
the need for a flow language). In this manner the desired
composition is constructed in multiple iterations of
composing two at a time: for example, simple to simple
forming complex, then complex plus another simple, etc.,
hence the qualifier incremental in the title of the paper.
Current composition languages allow construction of
several services simultaneously [6], however in our
geographic web service context it is not realistic that a
user would combine, for example, 10 services at the same
time. Therefore, in principle, we prefer a simple and
consistent manner to create compositions instead of
increasing the cardinality of services composition gach
time. (This paired process is akin to software debugging,
where it makes sense to correct and test one bug at a time.
Here we are assured that each paired composition works
before we proceed to link another to the composition.) In
the prototype application presented the user manually
establishes the connections between the two parts
(services). One of the immediate goals is to eliminate this

" There is no problem in defining patt erns of higher order or even some
kind of model language.
181

© Granell et a/GEOPRO 2003 — ISBN: 970-36-0103-0

] (] [

g
E

][]

| s

-

L A:Semh o

- -

2 : Select services, |

|

- -

J: Services selected

1
1
1
1
4 : search ended :

5: Create umpuiﬁol\ pattern and connection,

e o - -

rules

e = - - -

| S, S

I
]
I
I
I
|
1
1
I
I
I
1
r
]
|
1
]
1
1
|
|
|
1
1

8: pdhll\ and rules created

7 yinitiate automatic cun"'diu\

fom—p==-

1
/N

I

|

i

]

I

I

bt o

v

e

|
AN

9 : Descripfon file created

et ke L L A —————

10 : Inifitale registry

Ll o o

- —— -

14:

eb sevice eompnihn:cnahd :
1

e

e 3

e Ll L L) S ———— T

e L e b L T kT —

11 : Add compositi

12: added

- -

13 : Registry ended

- - - -
]
1
]
I
i
I
i
I
]
]
]
]
5]; -

Figure. 2. Sequence diagram for search and composition of services

needs for human intervention to reach increasingly pure
levels of automated composition, perhaps initially
monitored by the user. This can only be accomplished
through the addition of semantic translators, ontology
parsers and addition of semantic tags [12], in line with the
grand proposal of the semantic web [13]. These
extensions are already contemplated within the presented
conceptual architecture. For example, a semantic
component describing web services and their data types
will be in charge of enriching these descriptions from
domain ontology (such as for example, transport experts’
vocabulary) in order to allow an inference engine to be
able to perform “matchmaking”, to dynamically detect
valid pairs of web services.

The composition process starting at step 7 is automated
and controlled by the Coordinator component. During
step 8 the Description Handler component encodes the
composition pattens and flows in a declarative format
based on XML [3]. Later the components from the
Invocation layer interpret this encoding at the moment of
invocation of the compound service. This format
describes two fundamental aspects of the composition:
how to connect and in which order to combine the two
services, and what should be the external behaviour of the
completed composition. The first aspect defines the type
of composition, normally serial, and the connection flow
for representing the data flow between the two services.
The second aspect describes the abstract interface of the
two services viewed as a single, independent web service.

182

On this occasion the abstract part defined in the WSDL
specification is used. Finally the resulting WSDL++
description of the composition is added to the service
catalog, thus exposing the new composition for future use
(steps 10-13).

The WSDL++ description of the resulting composition is
compatible with the WSDL standard. Any WSDL viewer
should be capable of interpreting correctly WSDL++
descriptions produced by our prototype, ignoring the new
tags added by our model.

2.2 INVOCATION VIEW

Figure 3 includes a UML sequence diagram which
illustrates the mode of search and invocation of both
atomic and compound web services.

In general terms the invocation of a composition requires
an analysis of the associated description to encode the
composition graph as a tree structure. Then, once this
structure is created it is traversed in backtracking-mode,
invoking the component web services and chaining the
results obtained according to the connection flow defined
in the WSDL++ description.

As in the composition view, first off the user selects the
service or composition he or she wishes to invoke. The
invocation process is totally automated and controlled by
the Coordinator component. The user need only facilitate

© Granell ef a/GEOPRO 2003 - ISBN: 970-36-0103-0

;

L 1: Search '

I 3 : Service selected :

4 : Search ended

e L L pep—

|
)
: 5 : Initiate inveoatio

T L L L o T T ™ " " Y " T

ey Sy) £ ——

1
!
!
]
I
I
I
|
1
1
1
1
1
!
I
I
1
1
I
]
I
|
I
I
I
1
1
1
1
I
]
I
I
|
I
4
)
I

14 : Return result invoe

A

= 3

r
]
|
]
1
I
I
]
I
I
I
ill\
1
1
I
]
)
& !
w !
.. l
¥
5
:
:
&

e e e e ke E kT T S ————

9 : Invoke single servic

I
I
I
I
I
1
I

I

Figure 3. Sequence diagram for search and invocation of compositions

the initial parameters of the composition and await the
composition’s response (steps 5 and 14). The Interpreter
Handler (step 6) realises two basic functions. The first,
recursively interpret the WSDL++ of the composition. As
all compositions are comprised of services, the Interpreter
Handler analyzes the composition description in search of
the services which compose it. If it encounters atomic
services then the search halts and no further analysis is
needed. If, however, it encounters compound services, the
Interpreter Handler continues analyzing the new
composition until it reaches a pair of atomic services.

This analysis algorithm extracts the composition graph
from the very structure as defined by the composition
description. The second function of the Interpreter
Handler is the creation of the tree structure as an
implementation of the composition graph. In this
interpretation process we can appreciate how the
composition graph is implicitly defined by the
composition structure. As a consequence, at no moment
does the user need to construct the complete graph at
design time in order to create the desired composition.

Once the tree is created, the Invocation Handler
component takes control to initiate the invocation process
(steps 8-13). Invocation is a backtracking process where
the leaf nodes are directly invoked as atomic web services
(step 10) via the Web Services Invocation Framework
(WSIF) [14], and open-source APl provided by the
Apache Software Foundation (www.apache.org) which

permits the invocation of web services in manner which is
independent of protocol or access method (SOAP, HTTP
GET/POST, etc.). Intemnal nodes on the tree are not
directly executable because they describe virtual
compositions. Their mission is to interpret the
composition patterns and connection flows of the children
nodes, that is, decide whether to execute them in series,
parallel etc. and how to establish the data flow between
these children nodes.

The current implementation of our model executes the
service composition via the invocation of each instance
and connects the information between services as a
function of the data flow established by the user. This
vision of static composition has availability problems if
one of the services constituting the flow is not operational
or available at the moment of execution. Future
investigations are aimed at dynamic services composition
at execution time, whereby the composition itself is able
to detect functional anomalies and can substitute defective
services with alternates in a transparent manner.

Aside from the mentioned limitations, backtracking-mode
invocation through the weak composition model achieves
a dynamic binding with concrete web service ins_tanf:es at
execution time. The access mechanism to a service 1s not
known until the moment of invocation. In this way,‘lhe
composition using the abstract interfaces prow.des
maximum flexibility compared to binding at design time
of the composition.

183

© Granell et a/ GEOPRO 2003 - ISBN: 970-36-0103-0

3. AN EXAMPLE: ARITHMETIC
FUNCTIONS COMPOSITION

In this section we present a web based prototype
application which has been devel.opcd for the rfapld
integration, composition and invocation of w_eb services,
in an incremental fashion. Utilization of this prototype
permits us to test and demonstrate a first approxim:_mon of
the component based composition described here, its pros
and cons, as well as the backtracking process in the

composition invocation.

Following an interesting example of human a'rithmetic
composition during World War I, described l?y
Feynman" [15], we compose functions based on a chain
of basic arithmetic operations, each exposed as a web

service.

This simple example is illustrative in order to demonstrate
the capabilities of the prototype application. Future work,

already under way, is to apply the prototype to.geogmphic
web services, beginning with well-known services such as
those defined by Open GIS Consortium, such as a
composition of a Web Map Service and a Web Feature
Service. While these tests will be far more realistic and
useful to an end user, they pose a degree of complexity
which does not help us to explain the basic concepts in a
didactic manner here.

Our simple example is based on the four basic arithmetic
operations (addition subtraction, multiplication, and
division) each of which is exposed as a separate web
service. Each web service implements an operation
through a single public method of the type:

Add (opl, op2) : AddReturn
Subtract (opl, op2) : SubtractReturn
Multiply (opl, op2) : MultiplyReturn
Divide (opl, op2) : DivideReturn

Imagine that we wish to solve compositions of arithmetic
functions. For example if /'y g are combinations of basic
arithmetic functions, then f/ & g would be a valid
composition of functions. The function /' might be defined
as the combination of a sum and a division, whereas the
function g might be another combination of the operations
subtraction and multiplication:

S(x,»,2)=

xX+y

z
glu,v,w)=(u-v)*w

' Nobel prize-winning physicist Fe ynman describes how, during the
Manhattan Project in Los Alamos, he formed ‘chains’ of dozens of
female data processors, each armed with a mechanical calculating
machine and assigned to receive a punch card from the previous person,

perform a single mathematical operation on it --addition, subtraction,

cube root, etc.--and then pass it to the next person.

184

In this manner the composition / & g would take the

following form:
xX+y

Y=v)*w

[f®g=f®g(x.y.z,v,w) = g(f(x,p.2),v.w) = ((

z

If we analyze the resulting composition, it would be
formed by a combination of simple arithmetic services.
Evidently, it would be totally inefficient to attempt to
create a separate and permanent web service for each
possible arithmetic composition. In this case no service
exists to resolve f & g, however exploiting the
combination of existing simple services it becomes
possible to meet the special needs of the desired
combination.

The remainder of this section describes in some detail
how we realize the composition and invocation of
arithmetic functions using the prototype which
implements the weak composition model.

3.1 COMPOSITION OF
FUNCTIONS

ARITHMETIC

The construction of compositions in the weak
composition model follows an incremental, top-down
design, that is to say it is initiated with the union of
atomic services to form intermediate compositions, until
arriving at the compound compositions desired by the
user. In order to create the composition / & g, we
previously would need to have created the intermediate
compositions /'y g. Consequentially, there are three new
compositions awaiting in a registry, to be reutilized at
another moment or by other users: £, g and f ®g.

Figure 4 shows the component Composition Handler for
the creation of f at the moment of specifying the
composition pattern and connection flow. This component
is divided in two zones. The upper part shows information
relevant for the user of two services to be combined, as
for example the Add and Divide operations. In the lower
part, the more interesting part, the composition pattern
and connection flow for the two services are specified.
Specifically, the output parameter AddReturn of the Add
operation with the input parameter op/ of the Divide
operation. The other input parameter of Divide, op2, is
defined as a parameter external to the composition that is,
introduced by the user at the moment of invocation.

Additionally, in this prototype it is possible to define
input parameters as constants, whose value remains
embedded in the WSDL description of the composition.
Once the parameters defining the composition are
configured, the Description Handler component creates
the associated WSDL++ description and adds it to the
registry of available services (see Annex for the complete
WSDL++ description of composition f).

© Granell et a/GEOPRO 2003 — ISBN: 970-36-0103-0

:. http://localhost/services/CompHandler - Microsoft Inteérnet EXBIORERE S I =10 x|
| Ble Edt View Favorkes Tooks Help E3

Web Services Composition Table

[Information of Web Services
Left Web Service Right Y/eb Service
Operation: Add Operation: Divide
Input message Output message Input message Output message
AddRequest AddResponse DivideRequest DivideResponse
(op1, trpe (op1. type
x2d.string) { AddReturn, type xzd string) [DivideReturn, typs
(op2, type xsd: string) (op2, type xrd string)
xsd:string) xzd:string)

Composition Pattern - Connection Flow

Aggreg. V/SDL Composition
name pattern Connection flow Actions

Sequence | Add Connaction |
E] I.,.||,| [output Parts]| [External <] |[1nput Parts ~|

[Create wsDL++ |

AddRetum i: connectad to opl
op2 - external parameter

Figure 4. Specification of a composition pattern and th e connection flow for the creation of composition f.

| T T B v tx ver reee ok L =
I7:put message p MsgRequest al o _3

* process g
Param Param Valve <a WSDL C ition: hep /fararilt ST G s
type n!n WSOL Compesition: httn/ramentiz a2t yi asfservices/vsslf wg
1 Ao [xing {5 ~ WSDL Single \\ftl;se,nim: btz ilccathest guipicalyaddserice juyivrsl
Entry: opl=5; op2=7;
2. p_A_op2 |xsd:string I[’] Return: AddRetum=12;
3. p_D_op2 [xsd:string "2 + WSDL Single Web service: b
Entry: opl=12; 0p2=2;
4. p_S_op2 |xsdistnng lﬁ o Return: DivideRetumn=6;
| o' WSDL Composition: [t Fam ynils gcr un eelssrmon/mw il > yogdi
5. p_M_op2 |xsd:string l|10 « WSDL Single Web service: hnip-ccathost/aviz/eNe/Subtracrervice joy "misl]
_m Entry: opl=6; op2=3;
Return: SubtractReturmn=3;

/ WSDL Single Web service: b

O'_inm!mimu_ng«-- : Entry: opl=3; 0p2=10;
Param name Param type Return: MulbplyRetumn=30;

1. p_ll_m’hkmm[nd:ﬂ:ing __:l :J
e [A I T S

(a) (b)

Figure 5. (a) - User sets initial parameters for f @g composition invocation; (b) - Result for /' ®g composition invocation.

185

© Granell et a/ GEOPRO 2003 - ISBN: 970-36-0103-0

In the same way, the user creates a composition g and
then the final composition / & g, from the intermediate
composmons f and g. This iterative method of gradual
composition encapsulates the complexity of the
composition at design time. It is far easier for the user to
compose f ®g from fand g than from the basic arithmetic
operations themselves.

Also, the incremental composition model alongside the
possibility to independently invoke each intermediate
composition created, facilitates debugging a priori.
Utilizing this prototype it is possible to create each
intermediate composition, execute it, and validate it
correct operation. This characteristic helps save effort in
later debugging steps in the final composition.

3.2 INVOCATION OF ARITHMETIC FUNCTIONS

The invocation process is centred on tree structure for the
composition graph. The general invocation process of any
composition is comprised of the following steps. The user
introduces the initial composition parameters. Then the
components of the Invocation layer are charged with
creating the tree based on the description of the
composition, with invoking the composition while
establishing the data flows between connected services.
Finally the component Coordinator returns the resulting
data to the user.

Returning to the example of invocation of the
composition f/ & g, the user introduces the initial
parameters of the composition (see figure 5a). Next, the
Interpreter Handler is responsible for creating the tree
structure. During the process of analysis the Interpreter
Handler creates a node for each composition or atomic
web service encountered, establishing double links
between a father node and its children nodes. The initial
invoked composition is identified by the root node. Each
of the atomic services or intermediate compositions
forming a given composition is converted into a child
node of the node identifying the main composition.
Specifically, the composition / & g is converted in root
node and the compositions /'y g as children nodes on the
left and right respectively. Continuing the analysis
recursively, the node associated with the composition f
contains as children the atomic web services Add and
Divide, while the node associated with the composition g
contains the services Subtract and Multiply.

Once the tree is constructed, we need only to invoke it to
obtain the composition’s result. It is not possible in all
cases to establish a priori the concrete value of the data
flow between the services comprising the composition.
Normally dependencies at execution time will impede the
specification of concrete values for all parameters of web
services. It is necessary to utilize a backtracking mode
algorithm to traverse the tree, in order to realize

186

simultaneously the downward search and adjustment of
inter-service data flow while returning. For example in
invoking composition /, the services Add and Divide are
defined in sequence. In this case it is not possible to begin
execution of the service Divide without first obtaining the
results of Add. In figure 5b we find the result of invoking
the composition / & g. In it we see the hierarchical
structure of the invocation of the tree which represents the
logical composition graph.

4. CONCLUSION AND FUTURE WORK

In this paper has been presented a model for weak
composition of web services within the context of the
ACE-GIS project [2], on-going research on geographlc
web service interoperability.

The model proposes a definition of web service
compositions which are weakly or loosely coupled based
only on abstract syntactic descriptions in WSDL. This
weak composition is specified declaratively in XML,
WSDL++, as an aggregation of external descriptions of
the services as well as the composition pattern and
connection flow.

From the inherent structure of this weak composition the
Interpreter Handler generates a tree structure which the
Invocation Handler then traverses in order to invoke the
compound service.

With this model we attend to several aspects of the
service composition problem:

(1) Compositions are specified based on abstract
descriptions of the services, linked to WSDL
interfaces. This permits great flexibility in the
integration of services which are a priori
incompatible.

(i1) Dynamic coupling of service instances is
accomplished at execution time. The mechanism
for accessing services is not known until the
moment of invocation. This results in flexibility
compared to design-time coupling.

(i) The oriented abstract interfaces composition and
the backtracking-mode invocation of services via
the logical composition graph are features of the
proposed model. It permits that both
compositions and simple web services may form
a part of future compositions, which take on the
appearance of atomic services.

(iv) The construction of compositions follows an
incremental design which hides composition
complexity from the user (encapsulation),
facilitates ~ independent invocation of
intermediate combinations, and facilitates the
debugging and error detection in the final
composition.

(v) The combination of patterns and the inherent
structure of the composition eliminate the need

for a flow language. This main characteristic
differentiates the weak composition concept
from current languages for the composition of
web services.

(vi) This model defines a framework in which
semantic aspects; quality of service, service cost,
etc. could be included.

Thus far we have developed a prototype capable of
guiding the user in the creation of compositions formed
by an arbitrary number of existing web services. This
prototype demonstrates the characteristics defining weak
composition that is, permitting the composition of web
services based on principles of interoperability and
scalability.

As far as future work, we are labouring within the ACE-
GIS project to compose a simple emergency management
system combining a Web Feature Service (gas release
plume model) and a weather service (reporting wind
conditions at a given location); this is the logical next step
toward supporting diverse geographic services.
Additionally we are working with ACE-GIS partners
(University of Miinster) to incorporate semantic aspects
(o::xter_lsions of DAML-S) of the emergency management
situation, with the goal of improving semantic
interoperability within the composition. Finally, to help
assure that the resulting service composition is somewhat
fault tolerant with regard to service availability and
quality 'o_f service, we are also investigating dynamic
composition at execution time [16], so that the
composition will be able to detect service faults and

rcpla‘ce faulty services with substitutes meeting user
requirements.

S. ACKNOWLEDGEMENTS

The work described here has been partly supported by the
projects TIC-2000-1568-C03 (Spain Ministry of Science
and Technology), IST-2001-37724 (European Union) and
CTIDIB/2002/336 (Valencia government: Generalitat
Valenciana).

REFERENCES

[1] M.P. Singh, Physics of Service Composition,
IEEE Internet Computing, 5(3), 2001, 6-7.

[2] M. Gould, J. Poveda, & J. Huerta, ACE-GIS:
Integracion y Composicion de Servicios Web Geograficos
y de E-comercio. In: Toro, M. (Ed.): Proc. Il Jornadas de
Sistemas de Informacién Geogrdficos El Escorial,
Madrid, November 2002, 7-17. Project described in
English at http://www.acegis.org

© Granell et a/GEOPRO 2003 - ISBN: 970-36-0103-0

[3] C. Granell, J. Poveda, & M. Gould, Composicion
Débil de Servicios Web, Submitted to professional
Jjournal. Also available on-line at:
http://www3.uji.es/~canut/weakcomposition.pdf

[4] D. Fensel & C. Bussler, The Web Service
Modeling Framework WSMF, Electronic Commerce
Research and Applications Journal 1(2), 2002, 113-137.
[5] B. Benatallah, Q.Z. Sheng, & M. Dumas, The
Self-Serv Environment for Web Services Composition,
IEEE Internet Computing, 7(1), 2003, 40-48.

[6] S. Aissi, P. Malu, & K. Srinivasan, E-Business
Process Modeling: The Next Big Step, JEEE Computer,
35(5), 2002, 55-62.

[7] W.M.P. Van Der Aalst, Don’t Go with the Flow:
Web Services Compositions Standards Exposed, /EEE
Intelligent Systems, 18(1), 2003, 72-76.

[8] J.G. Hayes, E. Peyrovian, S. Sarin, M.-T.
Schmidt, K.D. Swenson, & R. Weber, Workflow
Interoperability Standards for the Intemet, JEEE Internet
Computing, 4(3), 2000, 37-45.

[9] B. Benatallah, M. Dumas, M.C. Fauvet, & F.A.
Rabhi, Towards Patterns of Web Services Composition.
In S. Gorlatch and F. Rabhi (Eds): Parterns and skeletons
for parallel and distributed computing (UK: Springer
Verlag, 2002).

[10] IDC analysts, Web Services Adoption Timeline
and Related Business Opportunities, 2002.
http://www.idc.com/en_US/st/extras/webServices.pdf
[11] R. Chinnici, M. Gudgin, J.-J. Moreau, & S.
Weerawarana, Web Services Description Language
(WSDL) Version 1.2: Core Language. W3C Working
Draft 11 June 2003. http:/iwww.w3.org TR/wsdl12/.
[12] E. Sirin, J. Hendler, & B. Parsia, Semi-automatic
Composition of Web Services using Semantic
Descriptions, Proc. of Web Services: Modeling,
Architecture and Infrastructure Workshop at ICEIS 2003
Angers, France, 2003.

[13] T. Bemers-Lee, J. Hendler, & O. Lassila, The
Semantic Web, Scientific American, 284(5), 2001, 34-43.
[14] Web Services Invocation Framework, A;.)z:che
Software Foundation, 2003. http://ws.apache.org‘wsil’.
[15] R.P. Feynman, The pleasure of finding things
out: The best short works of Richard P. Feynman
(Cambridge, Massachusetts: Perseus Publishing, 1999).
[16] S. Ghandeharizadeh, G.A. Knob]oclf, C
Papadopoulos, C. Shahabi, E. Alwagait, J.L. Ambite, M.
Cai, C.-C. Chen, P. Pol, R. Schmidt, S. Song, S. Thakkar,
& R. Zhou, Proteus: A System for Dynamically
Composing and Intelligently Executing Web Services. In
the First International Conference on Web Services
(ICWS), Las Vegas, Nevada, June 23-26, 2003.

187

